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* Lecture aims:

* Recognize that state variable models can describe the dynamic behavior of physical
systems and can be represented by block diagrams and signal flow graphs.

* Understand the important role of state variable modeling in control system design
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Signal Flow

A signal-flow graph is a diagram consisting of nodes that are connected
by several directed branches and is a graphical representation of a set of
linear relations.

: . . e > P Ak
The basic element of a signal-flow graph is a unidirectional path _
segment called a branch v A ’

A loop is a closed path that originates and terminates on Fijx = gain of kth path from variable x; to variable x;,
A = determinant of the graph,

A;;x = cofactor of the path Py,

the same node. Two loops are said to be nontouching if they do
not have a common node

N
A=1-SL,+ > LiLp— Y LuyLul,+ «..A =1~ (sum of all different loop gains)
n=1 o ‘;réhi“g nmt‘rt-éz::ging + (sum of the gain products of all combinations of two nontouching loops)
— (sum of the gain products of all combinations of three nontouching loops)

+ .-,
The cofactor A;;; is the determinant with the loops touching the kth path removed.




Signal Flow

The paths connecting the input R(s) and output Y(5) are
P, = G\G,G;G, (path 1) and P, = GsG¢G;G; (path 2)
There are four self-loops:
L, = GyH,, L, = HyG,, L; = G¢Hg, and L, = G;H;
Loops L.7 and L.2 do not touch L3 and 1.4. Therefore, the determinantis g (3
A=1—-(Ly+ Ly+ Ly+ Lg) + (LqL; + L{Ly+ L,Ly + L,L,)

The cofactor of the determinant along path 1 is evaluated by removing
the loops that touch path 1 from A. &; =1 — (L3 + Ly)
Similarly, the cofactor for path 2is Az =1 = (L; + L)
Therefore, the transfer function of the system is
__GiGGG,(1 — L3 — La) + GsGeGrGg(1 — Ly — L))
1—-L;—L,—L3— L4+ LiLs+ LLy+ LLs+ LyLy




Signal Flow

The armature-controlled
DC motor
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Signal Flow

The armature-controlled DC motor 1

K, _
Gy(s) = Gals) = 5

. : 3 R,*+Ls
Using Mason's signal-flow gain formula,

transfer function for 0(s)/ Va(s) with Td(s) = (e O G Tals) Ts)  Gyls)

— >
The forward path is P7(s5), which touches
the one loop, L7(s), where

%GI(S)GZ(S) and L,(s) = —KpGi(5)GaAs).

A=1- (Ll + L, + L+ L4) + (L1L3 + LyLq+ LoLy + L3L4)
Pi(s) _ (1/5)G1(s)Ga(s) _ Ky,
1= Li(s) 1+ KGi(s)Gas) s[(Ry + Los)(Js + b) + KpKpn]

Pi(s) =

T(s) =




State Space Equations

* State equations is a description which relates the following X(?) = Ax(z) + Bu(1)

four elements: input, system, state variables, and output ¥(1) = Cx(1) + Du()

: 3 3 pN day dyp - Ay
Matrix A has dimensions nxn and it is called the Gy @y - Gy
system matrix, having the general form Lo :

[ ys = gy
Matrix B has dimensions nxm and it is called the input matrix, having the general
form en e e e
Matrix C has dimensions pxn and it is called the [
output matrix, having the general form -

€y €22 == Oy

Cpl Cp2 - Oy

Matrix D has dimensions pxm and it is called the feedforward matrix, having the
general form




State Space Representation

* The general form of a dynamic system

The conceptof a set of state variables that representa dynamic system can be illustrated in terms of
the spring-mass-damper system. A set of state variables sufficient to describe this system includes the
position and the velocity of the mass.

* We will define a set of state variables as (x7, x2), where

d dx
x1(6) = y(t) and x,(t) = %ﬂ d—rl = X2

To write Equation of motion in terms of the state variables, we substitute the state variables as

already defined and obtain dx, d2y
M=+ bxy + kxi = u(t) M?

Therefore, we can write the equations that describe the behavior of the spring-mass damper system as
the set of two first-order differential equations dx, —b X |
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State Space Representation

* State space matrix Emm——
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State Space Representation

RLC circuit example

The state of this system can be described by a set of state
variables (x7, x2), where x7 is the capacitor voltage vo(?) and x2
is the inductor current 7 {2).

Utilizing Kirchhoft’s current law at the junction -

duv. Current T
i, = C*E:- = +u(t) — iy source (

OR

Kirchhoff’s voltage law for the right-hand loop provides the equation
describing the rate of change of inductor current as . di;
dr

o _RJ:L -+ Ve

The output of this system 1s represented
v, = Rij(t)




State Space Representation

RLC circuit example -
L.

: : : . uir)

* rewrite Equations as a set of two first-order differential  cunen ® .=

: : : v, = C
equations in terms of the state variables x7 and x2 as o —,{T

i ™ C“(f) dr +EII - Exz i, = C“E- = +u(t) — iy

di
y(t) = vo(t) = Rxy L-ié- = —Ri, + 0.

obtain the state variable differential equation for the RILC Vo = Riy(t)

The output signal 1s then

1
and the output as ; x + [E:|
y=[0 Rix 0 u(t)




TRANSFER FUNCTION FROM THE
STATE EQUATION

* Obtain a transfer function G(s), Given the state variable
equations. Recalling Equations :where v is the single output
and # is the single input. ~ X = Ax + Bu

y = Cx + Du

The Laplace transforms of Equations  sX(s) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)

where B is an 7 x 1 matrix, since # is a single input, we obtain
(s — A)X(s) = BU(s)
X(s) = ©(s)BU(s)

®* we obtain state transition Matrix
[sI — A]™! = ®(s)




TRANSFER FUNCTION FROM THE
STATE EQUATION

* Transfer function G(s5): G(s) = Y(s)/U(s) is
G(s) = C®(s)B + D

* Let us determine the transfer function G(s) = Y'(s)/ U(s) for the
RI.C circuit, described by the differential equations

-
-
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0 source —T\




TRANSFER FUNCTION FROM THE
STATE EQUATION

®* Then we have

[sT — A] =

1 ( %)

A(s)

. [hereiote 'we obtait

®(s) =[sT — A]'! =

®* Then the transfer function is
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Model Examples

* Pulse Width Modulation (PWM)




